Einleitung
Ein Humbucker bietet, ob seiner zwei Spulen, verschiedene Schaltungsmöglichkeiten an. Die bekanntesten sind:
Bei allen drei erwähnten Möglichkeiten werden die elektrischen Kenngrößen Ls, Rs und Cs der Spulen jeweils anders mit dem Rest der Gitarrenelektronik kombiniert. Die resultierenden tatsächlichen Werte für Induktivität, Wicklungskapazität und Gleichstromwiderstand verändern sich dann wie folgt:
Die im weiteren Verlauf gezeigten Simulationsergebnisse der elektrischen Filterwirkung basieren auf der folgenden Schaltung:
Dabei wurden die im Bild erwähnten elektrischen Daten eines Aria Protomatic-V-Humbuckers und die Standardwerte für Potis und Kondensatoren verwendet. Für das Kabel wurde von einer Länge von 7m (CK=700pF) ausgegangen. Das folgende Bild zeigt die drei resultierenden Amplitudengänge des Aria Protomatic-V:
Man erkennt deutlich drei unterschiedliche Resonanzen f0 sowie eine generelle Verschiebung der oberen Grenzfrequenz fg (-3dB) hin zu höheren Werten:
Das Problem
Ich habe mittlerweile mehrere meiner Instrumente mit den sogenannten "Tri-Sound-Switches" ausgerüstet, die eben jene drei Modi ermöglichen. In der Praxis ergibt sich aus dem Höreindruck erstaunlicherweise jedoch eine andere Reihenfolge:
Da ich sowohl meinen Ohren, als auch meinen Rechenkünsten vertraue, stellt sich die Frage, welcher Effekt zu dem beschriebenen Höreindrücken führt? Die Klärung diese Frage ist Gegenstand dieses Beitrages.
Wohlgemerkt geht es also um die Klangunterschiede der verschiedenen Humbucker-Modes und nicht um die Frage, ob eine gesplitteter Humbucker wie ein echter Single-Coil klingen kann. Zu diesem Thema habe ich bereits einige Beiträge verfaßt, die zum Teil auch in Guitar-Letter 3 enthalten sind.
1. Ein neues Werkzeug - Die Kammfilter in der Elektrogitarre
Vielen Gitarristen ist nicht bekannt, daß es, neben der elektrischen Filterwirkung durch Induktivität, Wicklungskapazität und Gleichstromwiderstand des Tonabnehmers, noch weitere Filter gibt, welche den Klang der Elektrogitarre beeinflussen. Eine besondere Rolle spielen hier die Tonabnehmerposition und -breite. Sie führen zu Übertragungscharakteristiken, die periodische Minima und Maxima aufweisen. Aufgrund dieses Verlaufes werden die entsprechenden Filter auch als "Kammfilter" bezeichnet.
Hier ein Ausschnitt aus einer meiner Dokumentationen zum Thema "Tonabnehmerposition":
Für den Einfluß der Tonabnehmerbreite (Apertur) ergeben sich ähnliche Zusammenhänge:
Zusammenfassend läßt sich folgendes sagen:
Ein Problem besteht bei der Apertur. Genaue Daten lassen sich nur durch eine Messung des Magnetfeldes der Saite oder eine geeignete Simulation erhalten. Man findet im Internet jedoch "Faustwerte" von 1 Zoll für einen Stratocaster Single-Coil und 2.5 Zoll für einen parallelen Humbucker, die in diesem Fall grundsätzlich verwendet wurden.
Wie der Verlauf der beiden Funktionen und ihres Produktes für die E-Saite an der Halsposition auf der CS-400 aussieht, zeigt das folgende Bild:
Aus dem linken Bild läßt in dem blauen Verlauf von GXP(f) das erste Minimum bei 345Hz erkennen. Alle weiteren Nullstellen sind ganzzahlige Vielfache dieser ersten Kammfrequenz. Vergleicht man diese mit der Grundfrequenz der E-Saite (82.41Hz), so stellt man fest, daß hier ein Verhältnis von ungefähr 4:1 vorliegt. Dieses entspricht exakt dem Verhältnis von Mensur L0 und der Tonabnehmerposition xP. Mit Hilfe von Formel 1-63 kann man für k=1 diese Frequenz ziemlich genau bestätigen.
Besonders bemerkenswert ist die Tatsache, daß der Amplitudengang zu tiefen Frequenzen hin stark abfällt. Es findet also effektiv eine Dämpfung der "Bässe" statt.
Verkleinert man die Tonabehmerposition, indem man vom Hals zum Steg "wandert", so verschiebt sich die Lage der Extremstellen hin zu größeren Frequenzen. Gleichzeitig steigt die Dämpfung der tiefen Frequenzen stark an. Durch dieses Verhalten manifestieren sich also die charakteristischen Klangunterschiede der einzelnen Tonabnehmerpositionen.
Der Verlauf von GBP(f) zeigt ähnliche Eigenschaften, weist jedoch zwei bemerkenswerte Unterschiede auf:
Die Kombination beider Kammfilter ist in der grünen Kurve dargestellt. Hier ist deutlich zu erkennen, daß GBP die Funktion einer Hüllkurve einnimmt.
2. Eins oder Zwei? - Die Umschaltung der Apertur
Kommen wir zu unserem eigentlichen Problem zurück. Hier stellt sich die Frage, was den Unterschied zwischen Parallelbetrieb und Single-Coil-Mode ausmacht? Neben den schon erwähnten elektrischen Veränderungen, bleibt nur noch eine Änderung der magnetischen Breite des Tonabnehmers.
Dieser Begriff ist in diesem Zusammenhang eigentlich ein wenig irreführend, denn durch die Umschaltung der Spulen wird der magnetische Kreis des Tonabnehmers definitiv nicht verändert! Auch im Betrieb als Single-Coil wird der gleiche Bereich der Saite magnetisiert. Aus magnetischer Sicht ergibt sich als keinerlei Veränderung. Einzig die Breite des Sensors verändert sich. Der Tonabnehmer "sieht" dadurch also nur noch einen Teil der magnetisierten Saite.
Da die Kammfilter für den Parallel- oder Reihenbetrieb der beiden Humbuckerspulen identisch sind, läßt sich das Problem nun auf zwei Fälle reduzieren: Doppelspulbetrieb und Einzelspulbetrieb. Vergleichen wir einmal für diese beiden Fälle nur den Einfluß der magnetischen Breite bP:
Hier die charakteristischen Daten:
Alleine durch die schmalere Bauart kann der Einzelspuler fast doppelt so hohe Frequenzen übertragen!
3. Gut frisiert - Der gekämmte Tonabnehmer
Jetzt fügen wir den Einfluß der elektrischen Daten zum Kammfilter der Tonabnehmerbreite hinzu und erhalten wieder drei Kurven:
Betrachten wir zunächst den Single-Coil-Mode (blau). Der Amplitudengang verläuft bis zu einer Grenzfrequenz von 2.905kHz fast ohne Dämpfung des Signals. Danach erfolgt ein sehr steiler Abfall mit 60dB/Dekade. Dieses ist ein Hinweis auf ein Tiefpaßfilter dritter Ordnung, was ja auch den Tatsachen entspricht, denn die elektrischen Daten des Tonabnehmers begründen einen Resonanztiefpaß (2. Ord.) und die Tonabnehmerbreite erzeugt einen einfachen Tiefpaß. Beide Filter kombinieren sich dann zu einem System dritter Ordnung.
Das erste Minimum des Kammfilters liegt bei 4.087kHz. Bei 5.12kHz liegt ein erstes Maximum vor, welches mit -19dB (1/10 der Eingangsamplitude) nicht mehr besonders stark ausgeprägt ist. Die Filterkurve des Single-Coil-Mode hat also quasi einen rechteckigen Verlauf.
Der Parallel-Mode (rot) hat eine Grenzfrequenz von nur 731Hz. Das erste Minimum liegt bei 1.635kHz und das erste Maximum bei 2.428kHz/-10dB (1/3 der Eingangsamplitude). Im Vergleich zum Single-Coil-Mode zeichnet sich der Bereich von 731Hz bis 2.905kHz also durch eine teilweise sehr starke Dämpfung der Frequenzen aus.
Das zweite Maximum bei 4.082kHz/-8.6dB liegt zwar oberhalb des Übertragungsbereiches des Single-Coil-Mode, dürfte sich in seiner klanglichen Wirkung aber nicht so stark auswirken, da hier nur ein schmaler Bereich mit eine Bandbreite von rund 700Hz betont wird. Dieses Maximum ist auch in etwa identisch mit der Resonanzfrequenz des parallelgeschalteten Humbuckers (4.246kHz).
Der serielle Mode ist bei tiefen Frequenzen absolut mit dem Parallel-Mode zu vergleichen. Unterschiede ergeben sich nur bei den ersten beiden Maxima. Sie liegen bei 2.283kHz/-10dB und 3.856kHz/-24dB. Auch hier ist der Einfluß der Resonanzfrequenz der Reihenschaltung (2.209kHz) zu erkennen.
4. Gut frisiert - Doppelt hält besser
Betrachten wir zum Schluß die Amplitudengange der kombinierten Filter, also Resonanztiefpaß, Tonabnehmerposition und -breite. Da die Charakteristik der Kammfilter auch von der Grundfrequenz der Saite abhängig sind, wurden die Amplitudengänge für die tiefe und hohe E-Saite berechnet:
Auch hier ist deutlich zu erkennen, daß die beiden Humbucker-Modi eine deutliche Dämpfung bei den hohen Frequenzen enthalten. Dieser Effekt ist umso deutlicher, je kleiner die Grundfrequenz der angeschlagenen Saite ist. Auf der hohen e'-Saite ist der Effekt lange nicht mehr so stark. Die Grenzfrequenz des Kammfilters (GBP) liegt jetzt über 7kHz. In diesem Fall überwiegt die Wirkung des Filters, das durch die elektrischen Eigenschaften des Tonabnehmers gebildet wird.
Fazit
Der parallelgeschaltete Humbucker bietet mit einer Resonanzfrequenz von 4.246Hz und einer Grenzfrequenz von 6.623Hz einen wesentlich größeren Übertragungsbereich als der Single-Coil-Mode. Der Tonabnehmer kann diesen Vorteil jedoch nicht ausspielen, da durch die magnetische Breite des Tonabnehmers ein Tiefpaß entsteht, welcher den Amplitudengang schon bei relativ geringen Frequenzen begrenzt. Bei gängigen Humbuckern kann man hier von einer Grenzfrequenz zwischen 700Hz und 1000Hz ausgehen.
Durch diese Eigenschaft läßt sich der eingangs erwähnte Höreindruck gut erklären.
Der Parallel-Mode ist also irgendwie nicht Fisch und nicht Fleisch. Das mag der Grund dafür sein, daß man bei vielen Instrumenten eher einen Split der Tonabnehmer vorfindet und dafür auf die brummunterdrückende Wirkung verzichtet wird. Der klangliche Unterschied zum seriellen Mode ist deutlich stärker.
Aufgrund der Tiefpaßwirkung der Tonabnehmerbreite ist der effektive klangliche Unterschied zwischen der Parallel- und Reihenschaltung eher als marginal zu bezeichnen. Die Verringerung der Lautstärke hat hier mit Sicherheit eine größere Signifikanz als der geringe Klangunterschied.
Ich habe vor Jahren einmal einen Verkäufer zum Klang der schmalen Humbucker im Single-Coil-Format befragt. Die Antwort war: "Diese ganz crispen Höhen eines Single-Coils fehlen!"
Da diese Tonabnehmer im Vergleich zu einem echten Single-Coil eine leicht vergrößerte magnetische Breite haben, läßt sich diese Aussage jetzt auch aus technischer Sicht bestätigen.
Ulf
Ein Humbucker bietet, ob seiner zwei Spulen, verschiedene Schaltungsmöglichkeiten an. Die bekanntesten sind:
- Humbucker (seriell)
- Single-Coil
- Humbucker (parallel)
Bei allen drei erwähnten Möglichkeiten werden die elektrischen Kenngrößen Ls, Rs und Cs der Spulen jeweils anders mit dem Rest der Gitarrenelektronik kombiniert. Die resultierenden tatsächlichen Werte für Induktivität, Wicklungskapazität und Gleichstromwiderstand verändern sich dann wie folgt:
- Humbucker (seriell): L=Ls, C=Cs, R=Rs
- Single-Coil: L=0.5*Ls, C=2*Cs, R=0.5*Rs
- Humbucker (parallel): L=0.25*Ls, C=4*Cs, R=0.25*Rs
Die im weiteren Verlauf gezeigten Simulationsergebnisse der elektrischen Filterwirkung basieren auf der folgenden Schaltung:
Dabei wurden die im Bild erwähnten elektrischen Daten eines Aria Protomatic-V-Humbuckers und die Standardwerte für Potis und Kondensatoren verwendet. Für das Kabel wurde von einer Länge von 7m (CK=700pF) ausgegangen. Das folgende Bild zeigt die drei resultierenden Amplitudengänge des Aria Protomatic-V:
Man erkennt deutlich drei unterschiedliche Resonanzen f0 sowie eine generelle Verschiebung der oberen Grenzfrequenz fg (-3dB) hin zu höheren Werten:
- Humbucker (seriell): 2.209Hz / 4.79dB, fg=3.504Hz
- Single-Coil: 3.129Hz / 7.88dB, fg=4.906Hz
- Humbucker (parallel): 4.246Hz / 11.11dB, fg=6.623Hz
Das Problem
Ich habe mittlerweile mehrere meiner Instrumente mit den sogenannten "Tri-Sound-Switches" ausgerüstet, die eben jene drei Modi ermöglichen. In der Praxis ergibt sich aus dem Höreindruck erstaunlicherweise jedoch eine andere Reihenfolge:
- Humbucker (seriell)
- Humbucker (parallel)
- Single-Coil
Da ich sowohl meinen Ohren, als auch meinen Rechenkünsten vertraue, stellt sich die Frage, welcher Effekt zu dem beschriebenen Höreindrücken führt? Die Klärung diese Frage ist Gegenstand dieses Beitrages.
Wohlgemerkt geht es also um die Klangunterschiede der verschiedenen Humbucker-Modes und nicht um die Frage, ob eine gesplitteter Humbucker wie ein echter Single-Coil klingen kann. Zu diesem Thema habe ich bereits einige Beiträge verfaßt, die zum Teil auch in Guitar-Letter 3 enthalten sind.
1. Ein neues Werkzeug - Die Kammfilter in der Elektrogitarre
Vielen Gitarristen ist nicht bekannt, daß es, neben der elektrischen Filterwirkung durch Induktivität, Wicklungskapazität und Gleichstromwiderstand des Tonabnehmers, noch weitere Filter gibt, welche den Klang der Elektrogitarre beeinflussen. Eine besondere Rolle spielen hier die Tonabnehmerposition und -breite. Sie führen zu Übertragungscharakteristiken, die periodische Minima und Maxima aufweisen. Aufgrund dieses Verlaufes werden die entsprechenden Filter auch als "Kammfilter" bezeichnet.
Hier ein Ausschnitt aus einer meiner Dokumentationen zum Thema "Tonabnehmerposition":
Für den Einfluß der Tonabnehmerbreite (Apertur) ergeben sich ähnliche Zusammenhänge:
Zusammenfassend läßt sich folgendes sagen:
- Die Eigenschaften der Kammfilter sind unabhängig von den elektrischen Daten des Tonabnehmers.
- Die Übertragungsfunktionen gelten sowohl für die ungegriffene, als auch für die gegriffene Saite. Im letzteren Fall wird zwar die Frequenz erhöht, aber die effektive Mensur verkürzt sich um den gleichen Faktor, sodas sich die beiden Änderungen gegenseitig aufheben.
- Für jede Saite existiert je ein Kammfilter für die Tonabnehmerposition und die Tonabnehmerbreite.
- Beide Kammfilter sind kaskadiert (hintereinander geschaltet). Die gesamte Übertragungsfunktion ist also das Produkt der Übertragungsfunktion GXP und GBP.
Ein Problem besteht bei der Apertur. Genaue Daten lassen sich nur durch eine Messung des Magnetfeldes der Saite oder eine geeignete Simulation erhalten. Man findet im Internet jedoch "Faustwerte" von 1 Zoll für einen Stratocaster Single-Coil und 2.5 Zoll für einen parallelen Humbucker, die in diesem Fall grundsätzlich verwendet wurden.
Wie der Verlauf der beiden Funktionen und ihres Produktes für die E-Saite an der Halsposition auf der CS-400 aussieht, zeigt das folgende Bild:
Aus dem linken Bild läßt in dem blauen Verlauf von GXP(f) das erste Minimum bei 345Hz erkennen. Alle weiteren Nullstellen sind ganzzahlige Vielfache dieser ersten Kammfrequenz. Vergleicht man diese mit der Grundfrequenz der E-Saite (82.41Hz), so stellt man fest, daß hier ein Verhältnis von ungefähr 4:1 vorliegt. Dieses entspricht exakt dem Verhältnis von Mensur L0 und der Tonabnehmerposition xP. Mit Hilfe von Formel 1-63 kann man für k=1 diese Frequenz ziemlich genau bestätigen.
Besonders bemerkenswert ist die Tatsache, daß der Amplitudengang zu tiefen Frequenzen hin stark abfällt. Es findet also effektiv eine Dämpfung der "Bässe" statt.
Verkleinert man die Tonabehmerposition, indem man vom Hals zum Steg "wandert", so verschiebt sich die Lage der Extremstellen hin zu größeren Frequenzen. Gleichzeitig steigt die Dämpfung der tiefen Frequenzen stark an. Durch dieses Verhalten manifestieren sich also die charakteristischen Klangunterschiede der einzelnen Tonabnehmerpositionen.
Der Verlauf von GBP(f) zeigt ähnliche Eigenschaften, weist jedoch zwei bemerkenswerte Unterschiede auf:
- Tiefe Frequenzen werden nicht beeinflußt.
- Die Höhe der Maxima nimmt mit steigender Frequenz ab.
Die Kombination beider Kammfilter ist in der grünen Kurve dargestellt. Hier ist deutlich zu erkennen, daß GBP die Funktion einer Hüllkurve einnimmt.
2. Eins oder Zwei? - Die Umschaltung der Apertur
Kommen wir zu unserem eigentlichen Problem zurück. Hier stellt sich die Frage, was den Unterschied zwischen Parallelbetrieb und Single-Coil-Mode ausmacht? Neben den schon erwähnten elektrischen Veränderungen, bleibt nur noch eine Änderung der magnetischen Breite des Tonabnehmers.
Dieser Begriff ist in diesem Zusammenhang eigentlich ein wenig irreführend, denn durch die Umschaltung der Spulen wird der magnetische Kreis des Tonabnehmers definitiv nicht verändert! Auch im Betrieb als Single-Coil wird der gleiche Bereich der Saite magnetisiert. Aus magnetischer Sicht ergibt sich als keinerlei Veränderung. Einzig die Breite des Sensors verändert sich. Der Tonabnehmer "sieht" dadurch also nur noch einen Teil der magnetisierten Saite.
Da die Kammfilter für den Parallel- oder Reihenbetrieb der beiden Humbuckerspulen identisch sind, läßt sich das Problem nun auf zwei Fälle reduzieren: Doppelspulbetrieb und Einzelspulbetrieb. Vergleichen wir einmal für diese beiden Fälle nur den Einfluß der magnetischen Breite bP:
Hier die charakteristischen Daten:
- Doppelspulbetrieb: fg=723Hz, fmin=1.635Hz, fmax=2.338Hz
- Einzelspulbetrieb: fg=1.808Hz, fmin=4.087Hz, fmax=5.846Hz
Alleine durch die schmalere Bauart kann der Einzelspuler fast doppelt so hohe Frequenzen übertragen!
3. Gut frisiert - Der gekämmte Tonabnehmer
Jetzt fügen wir den Einfluß der elektrischen Daten zum Kammfilter der Tonabnehmerbreite hinzu und erhalten wieder drei Kurven:
Betrachten wir zunächst den Single-Coil-Mode (blau). Der Amplitudengang verläuft bis zu einer Grenzfrequenz von 2.905kHz fast ohne Dämpfung des Signals. Danach erfolgt ein sehr steiler Abfall mit 60dB/Dekade. Dieses ist ein Hinweis auf ein Tiefpaßfilter dritter Ordnung, was ja auch den Tatsachen entspricht, denn die elektrischen Daten des Tonabnehmers begründen einen Resonanztiefpaß (2. Ord.) und die Tonabnehmerbreite erzeugt einen einfachen Tiefpaß. Beide Filter kombinieren sich dann zu einem System dritter Ordnung.
Das erste Minimum des Kammfilters liegt bei 4.087kHz. Bei 5.12kHz liegt ein erstes Maximum vor, welches mit -19dB (1/10 der Eingangsamplitude) nicht mehr besonders stark ausgeprägt ist. Die Filterkurve des Single-Coil-Mode hat also quasi einen rechteckigen Verlauf.
Der Parallel-Mode (rot) hat eine Grenzfrequenz von nur 731Hz. Das erste Minimum liegt bei 1.635kHz und das erste Maximum bei 2.428kHz/-10dB (1/3 der Eingangsamplitude). Im Vergleich zum Single-Coil-Mode zeichnet sich der Bereich von 731Hz bis 2.905kHz also durch eine teilweise sehr starke Dämpfung der Frequenzen aus.
Das zweite Maximum bei 4.082kHz/-8.6dB liegt zwar oberhalb des Übertragungsbereiches des Single-Coil-Mode, dürfte sich in seiner klanglichen Wirkung aber nicht so stark auswirken, da hier nur ein schmaler Bereich mit eine Bandbreite von rund 700Hz betont wird. Dieses Maximum ist auch in etwa identisch mit der Resonanzfrequenz des parallelgeschalteten Humbuckers (4.246kHz).
Der serielle Mode ist bei tiefen Frequenzen absolut mit dem Parallel-Mode zu vergleichen. Unterschiede ergeben sich nur bei den ersten beiden Maxima. Sie liegen bei 2.283kHz/-10dB und 3.856kHz/-24dB. Auch hier ist der Einfluß der Resonanzfrequenz der Reihenschaltung (2.209kHz) zu erkennen.
4. Gut frisiert - Doppelt hält besser
Betrachten wir zum Schluß die Amplitudengange der kombinierten Filter, also Resonanztiefpaß, Tonabnehmerposition und -breite. Da die Charakteristik der Kammfilter auch von der Grundfrequenz der Saite abhängig sind, wurden die Amplitudengänge für die tiefe und hohe E-Saite berechnet:
Auch hier ist deutlich zu erkennen, daß die beiden Humbucker-Modi eine deutliche Dämpfung bei den hohen Frequenzen enthalten. Dieser Effekt ist umso deutlicher, je kleiner die Grundfrequenz der angeschlagenen Saite ist. Auf der hohen e'-Saite ist der Effekt lange nicht mehr so stark. Die Grenzfrequenz des Kammfilters (GBP) liegt jetzt über 7kHz. In diesem Fall überwiegt die Wirkung des Filters, das durch die elektrischen Eigenschaften des Tonabnehmers gebildet wird.
Fazit
Der parallelgeschaltete Humbucker bietet mit einer Resonanzfrequenz von 4.246Hz und einer Grenzfrequenz von 6.623Hz einen wesentlich größeren Übertragungsbereich als der Single-Coil-Mode. Der Tonabnehmer kann diesen Vorteil jedoch nicht ausspielen, da durch die magnetische Breite des Tonabnehmers ein Tiefpaß entsteht, welcher den Amplitudengang schon bei relativ geringen Frequenzen begrenzt. Bei gängigen Humbuckern kann man hier von einer Grenzfrequenz zwischen 700Hz und 1000Hz ausgehen.
Durch diese Eigenschaft läßt sich der eingangs erwähnte Höreindruck gut erklären.
Der Parallel-Mode ist also irgendwie nicht Fisch und nicht Fleisch. Das mag der Grund dafür sein, daß man bei vielen Instrumenten eher einen Split der Tonabnehmer vorfindet und dafür auf die brummunterdrückende Wirkung verzichtet wird. Der klangliche Unterschied zum seriellen Mode ist deutlich stärker.
Aufgrund der Tiefpaßwirkung der Tonabnehmerbreite ist der effektive klangliche Unterschied zwischen der Parallel- und Reihenschaltung eher als marginal zu bezeichnen. Die Verringerung der Lautstärke hat hier mit Sicherheit eine größere Signifikanz als der geringe Klangunterschied.
Ich habe vor Jahren einmal einen Verkäufer zum Klang der schmalen Humbucker im Single-Coil-Format befragt. Die Antwort war: "Diese ganz crispen Höhen eines Single-Coils fehlen!"
Da diese Tonabnehmer im Vergleich zu einem echten Single-Coil eine leicht vergrößerte magnetische Breite haben, läßt sich diese Aussage jetzt auch aus technischer Sicht bestätigen.
Ulf